
MONK Project Research Report page 1 of 15

MONK Project
Research Report by Salman Bakht, Pehr Hovey, and Kris McAbee

Summary
MONK, which stands for “Metadata Offer New Knowledge,” is a single digital environment of
literary texts that endeavors to make “modern forms of text analysis and text mining accessible
to humanities scholars.”1 The metadata associated with any given document in the MONK
environment ranges from data about individual words, to data about discursive organization, to
bibliographic data. MONK offers the ability to read back and forth between these different levels
of data and, therefore, to read as closely or as distantly as one wants. The current collection of
texts in the MONK prototype consists of about 1200 works, including approximately 500 texts of
various genres published between 1533 and 1625, alongside about 700 works of English and
American fiction from about 1550 to 1923. Fundamentally, MONK assumes that operating
through “coarse but consistent encodings across many texts in a heterogeneous document
environment” offers significant scholarly benefit. The single environment that will bundle these
operations for this large collection of texts will be housed at http://monkproject.org.

Description
The first phase of the MONK project was largely funded by a two-year (January 2007- January
2009) $1 million grant from the Andrew W. Mellon Foundation.2 Participating Organizations
include Academic Technologies (Northwestern University), the Center for Digital Research in
the Humanities (University of Nebraska-Lincoln), the Graduate School of Library and
Information Science at the University of Illinois, Human-Computer Interaction Lab (University
of Maryland), Humanities Visualization (University of Alberta and McMaster University),
Maryland Institute for Technology in the Humanities, and the National Center for
Supercomputing Applications, University of Illinois).

The literary texts used in the MONK prototype are not in themselves critical editions, but they
have seen some degree of editorial and scholarly intervention in the process of preparing and
collecting them into the digital libraries from which MONK draws. Many works are from TCP
(Text Creation Partnership) projects and, thus, have similar standards for accuracy, encoding,
markup, and fidelity to the original. (See “The Text Creation Partnership,”
http://www.lib.umich.edu/tcp/.) The largest collections in MONK’s corpora include:

1. The Text Creation Partnership (TCP), an archive of ~13,000 texts published
between 1470 and 1700 in England)

2. The Chadwyck-Healey Eighteenth-Century Fiction Collection (~100 novels
published between 1700 and 1780)

3. The Chadwyck-Healey Nineteenth-Century Fiction Collection (~250 novels
written in England between 1780 and 1900

1 “Notes towards a user manual of Monk,” 2009, 5 Mar. 2009
<https://apps.lis.uiuc.edu/wiki/display/MONK/Notes+towards+a+user+manual+of+Monk>.
2 “Mellon Foundation Awards MONK a Million,” 2007, 8 Mar. 2009
<http://www.lis.uiuc.edu/oc/news/displaynews.html?source=e47099ClY2HMvdVKg7pMAw==&year=Tpfh-
axYyS2d3HIF5XQQxw==>

MONK Project Research Report page 2 of 15

4. The Chadwyck Healey Early American Fiction archive (~100 novels written in
America between 1780 and 1851

5. The Wright American Fiction Archive (~1,000 American novels published
between 1851 and 1875)3

MONK is built on the foundation of two preceding Mellon-funded initiatives: the Nora Project
(http://www.noraproject.org) and WordHoard (http://wordhoard.northwestern.edu). The Nora
Project is a multi-institutional and multi-disciplinary effort to create pattern-recognition and
visualization software that facilitates the detection of patterns across digital archives, with a
focus on 19th-century British and American literature. Meanwhile, WordHoard’s concentration
has been on providing a user interface that exposes morphological, lexical, prosodic, and
narratological criteria of a deeply tagged corpora containing the entire canon of Early Greek epic
in the original and in translation, as well as all of Chaucer, Shakespeare, and Spenser. Although
these two projects may look very different to the end user, they share similar text-mining
strategies. MONK combines the tactics of these two initiatives “to create an inclusive and
comprehensive text-mining and text-analysis tool-kit for scholars in the humanities.”4

Research Context
The MONK Project is of current interest to the fields of literary studies, humanities computing,
as well as social computing at the intersection of these fields. As Claus Huitfeldt argues,
“Textual scholars should not relate to markup technology as passive recipients of products from
the computing industry, but rather be actively involved in the development and in setting the
agenda, as they possess insight which is essential to a successful shaping of digital text
technology.”5 The wide-reaching collaboration of MONK exemplifies this active involvement, in
as much as it builds on the Nora Project’s “guiding assumption” that humanities-oriented text-
mining applications “should be prevocational in spirit—rather than vocational or merely
utilitarian – and that the intervention and engagement of a human subject expert is not just a
necessary concession to the limits of machine learning but instead an integral part of the
interpretative loop.”6

Because MONK’s text-mining focus is on primary texts written in English, and the seed projects
WordHoard and Nora both apply to literary texts, the project offers significant interest to various
aspects of literary studies. MONK employs a “radical ‘divide and conquer’ strategy,” offering
metadata that ranges across bibliographical, lexical, and organizational data.7 Bibliographic and
orthographical variance data potentiates outcomes for history of reading and library studies,

3 “Notes towards a user manual of Monk,” 2009, 5 Mar. 2009
<https://apps.lis.uiuc.edu/wiki/display/MONK/Notes+towards+a+user+manual+of+Monk>.
4 “MONK (metadata offer new knowledge,” intute: best of the web, 8 Mar. 2009,
<http://www.intute.ac.uk/artsandhumanities/cgi-bin/fullrecord.pl?handle=20080415-09211422>
5 Carl Huitfeldt, “Scholarly Text Processing and Future Markup Systems,” 4 Mar. 2009
<http://computerphilologie.uni-muenchen.de/jg03/huitfeldt.html>. Professor Huitfeldt is the founding Director of
The Wittgenstein Archives at the University of Bergen (WAB) <http://wab.askis.uib.no/>.
6 Catherine Plaisant, Martha Nell Smith, Loretta Auvil, James Rose, Bei Yu, Tanya Clement, “’Undiscovered Public
Knowledge’: Mining for Patterns of Erotic Language in Emily Dickinson’s Correspondence with Susan Huntington
(Gilbert) Dickinson,” paper presented on “The Nora Project: Text Mining and Literary Interpretation” panel at
Digital Humanities 2006.
7 “Welcome,” Metadata Offer New Knowledge (MONK), 4 Mar. 2009 <http://monkproject.org>

MONK Project Research Report page 3 of 15

while new critical and philological approaches to literature benefit from the lexical and
morphological data MONK offers. Likewise, the organizational data about how texts are
structured (lines, stanzas, chapters, scenes, etc.) uncovered by MONK’s analyses offers
inevitable profits for narrative and discursive theory.

The MONK Project serves as a potential model for humanities computing initiatives that
similarly bring together philological and social scientific strategies. MONK is built on “the basic
assumption that the scholarly use of digital texts must progress beyond treating them as book
surrogates.”8 This text-mining objective in resistance to the notion of digital reading as a mere
proxy for reading in print or manuscript affects the changing conceptions of digital textuality.
The project’s extensive scope assembles disparate texts, from the 15th to the 20th centuries,
providing an illustration for offering a wide-ranging dataset in a single environment. Moreover,
MONK offers a powerful model for collaborative initiatives. Itself a collaboration among many
large-scale, interdisciplinary and international organizations, the project also hopes to navigate
across texts with open datasets (from WordHoard and Nora) and texts available on subscription
basis only (from ProQuest, for example). MONK’s aims bode well for promising developments
in datastructure. It aspires to create a robust, fast, and flexible datastructure, successful
development of which will be of critical interest for future digital humanities projects, including
but not limited to digital literary archives.

Finally, MONK endeavors to integrate user contributions (WordHoard already offers the sharing
of wordsets among users) such that the project resonates with intersections between scholarly
ventures and social computing. Further discussion of the social computing elements of MONK,
as well as ideas for other areas of expansion, are explicated below in the “Evaluation of
Opportunities/Limtations for the Transliteracies Topic” section.

Technical Analysis – Software
(Note: This report was written in March 2009, prior to the public release of the MONK software
and the completion of detailed documentation of all of the subcomponents. Much of the
information below was derived from the MONK Project Wiki and discussions with the MONK
Project team. This information is subject to change prior to the public release of MONK.)

MONK Technologies
While MONK is most directly characterized by the data mining algorithms and statistical
techniques used in text metadata analysis, there are also many different general-purpose
technologies used to develop the subcomponents that are loosely grouped together to create the
overall system.

Java, JavaScript, ExtJS & AJAX
Java is a general purpose programming language developed by Sun Microsystems and first
released in 1995. Java programs run in a Java Virtual Machine (JVM) which abstracts away
differences in hardware and operating systems architecture to enable one application to run on
many platforms. Java syntax was patterned after C and C++ but Java has more of an emphasis on
Object-Oriented Programming (OOP) and has less lower-level system functionality as a

8 “Project Description,” Metadata Offer New Knowledge (MONK), 4 Mar. 2009
<http://monkproject.org/?page_id=13>.

MONK Project Research Report page 4 of 15

consequence of running in a virtual machine. MONK uses Java either directly or through the use
of Java-based application frameworks for most of its subsystems.

JavaScript is client-side scripting language that can be embedded in a web page to enable a wide
range of capabilities beyond basic HTML. The code runs on the client side which means it needs
to be downloaded each time the website is visited. Contrast this with server-side languages
where relevant code is run by the web server before the page is returned to the user. JavaScript
was designed to resemble Java but is not directly related to the Java programming language and
instead derives its design from the Scheme programming language.

Asynchronous JavaScript and XML (AJAX) encapsulates a set of programming techniques and
technologies that work together to create interactive web pages. Asynchronous means that the
page can load and store data in the background without needing to explicitly reload the entire
page. This technique enables web pages to act more like a desktop application rather than a
sequence of static pages.

ExtJS (http://extjs.com/) is a JavaScript library that provides User Interface (UI) widgets and
data handling functions for use in building interactive web pages. Most UI Widgets can use
AJAX to retrieve data from a server as well as submitting new data to a server. MONK
Workbench uses ExtJS as a framework for developing new clients and components to interact
with the datastore.

REST and XML-RPC
Representative State Transfer (REST) is a method for building web applications that can
maintain a logical state in order to more closely behave like traditional desktop applications.
REST is not a specific platform but instead defines a “collection of network architecture
principles which outline how resources are defined and addressed.”9 The overall idea with
designing a system to be RESTful is to ensure that its resources are uniformly and predictably
accessible across different domains without the accessing application needing to know specific
infrastructure details (such as intermediate firewalls or proxy servers).

Remote Procedure Call (RPC) is a method for remotely executing code located in another
application. The idea is for a client application to access the functionality of another (server)
application without having to specifically code the remote application. Instead, an RPC method
takes the same method parameters that would have been used if the code were present locally
within the application and returns the results of the function call.

The separation of client and server allows for complex code to be run on a more powerful remote
computer with results being returned to a less-powered “thin client.” RPC also allows for
applications written in two different programming languages to exchange information if there is
a compatible RPC implementation for each platform.

9 “Representational State Transfer,” Wikipedia, 10 March 2009 <http://en.wikipedia.org/wiki/REST>.

MONK Project Research Report page 5 of 15

XML-RPC is an RPC implementation that encodes the function call parameters using XML and
uses HTTP as the transport protocol.10 For this reason it is widely used in developing web
applications that span multiple servers or implementation domains.

REST and RPC are considered to be two different solutions to the same class of problems and as
such are typically not used in the same application unless both interfaces are required. Both can
be classified as part of a Web Service which is “a software system designed to support
interoperable machine-to-machine interaction over a network.”11 MONK has middleware based
on the Spring framework that provides both REST and XML-RPC interfaces to the underlying
datastore and analytics functionality.

Text Markup Languages
Text must be presented to MONK in a useful format before it can be stored in the database.
Markup languages are used to encapsulate all relevant information about a text in a standardized
way so it can be easily processed.

Extensible Markup Language (XML) specifies a format for storing text data and metadata
together in a way that adheres to a defined schema to enable efficient information interchange.
XML is commonly used in web applications across many domains because it is very flexible. It
is described and maintained by the World Wide Web Consortium (W3C). The tagging structure
is similar to Hypertext Markup Language (HTML) except the permissible values for the tags are
not pre-defined. Since the tagset is extensible, XML can store almost any kind of data so long as
it can be categorized in some fashion to be described using a finite domain of tags. XML is
typically validated against a project-specific schema that describes how a well-formed document
should look. This validation step is critical in ensuring proper data interchange between different
applications.

The Text Encoding Initiative (TEI) is a consortium of many institutions dedicated to exploring
ways to efficiently and safely encode physical texts digitally without losing information present
in the original manuscripts. It is also focused on encoding methods to ensure easy digital text
interchange between projects and institutions.

TEI publishes many guidelines that are used by digital humanities institutions when they are
dealing with creating and processing digital texts. As of TEI version P5, XML is the exclusive
markup language used for TEI as the newest guidelines rely on features in XML and other
technologies such as XSL for processing TEI documents. 12 TEI guidelines essentially describe
valid tags and the circumstances in which they are used. Since TEI aims to encompass any text in
any language the full tagset is very large – nearly 500 in the current version13 – but typically only
a small subset is needed for a specific application. These subsets are referred to as the schema or
Document Type Definition (DTD) and are used when validating a TEI-encoded text.

10 “XML-RPC,” Wikipedia, 10 March 2009 <http://en.wikipedia.org/wiki/XML-RPC>.
11 “Web Services Glossary,” 10 March 2009 <http://www.w3.org/TR/ws-gloss/>.
12 “TEI: Learn the TEI,” 10 March 2009 <http://www.tei-c.org/Support/Learn/>.
13 “TEI: Introducing the Guidelines,” 10 March 2009 <http://www.tei-c.org/Support/Learn/intro.xml>.

MONK Project Research Report page 6 of 15

Tags in a TEI tagset fall into one of two categories depending on the type information they
enclose.14 Metadata tags capture information about the text including author, manuscript
description, or copyright date. Structural tags describe the actual layout and appearance of the
text. These have similar functionality to many of the tags in HTML that are used to specify
paragraph breaks, heading styles, etc.

TEI provides a special format called One-Document-Does-It-All (ODD) for describing the
specific TEI schema in use for a project that is portable across multiple validation systems. The
ODD format is similar in appearance to XML and is used to create a single file that can be
converted into various domain-specific formats. TEI provides a web interface named Roma
(http://tei.oucs.ox.ac.uk/Roma/) for easily generating validation schemas in Document Type
Definition (DTD), RELAXNG or W3C Schema format.

The MONK project uses TEI-Analytics (TEI-A) as the source format for texts to be ingested into
the system. TEI-A is a subset of the full TEI P5 specification with current schema information
available from the University of Nebraska, Lincoln (http://segonku.unl.edu/teianalytics/).
According to a MONK paper abstract “from one perspective, TEI-Analytics is a minor
modification of the P5 TEI-Lite schema, with additional elements from the Linguistic Segment
Categories to support morphosyntactic annotation and lemmatization.”15 Source text may come
to MONK in a different XML format (or other version of TEI) and so it must be converted to
TEI-Analytics before further processing.

Extensible Style Language (XSL) is a relative of XML that is used to specify transformations of
XML documents. It is described by the W3C and consists of three sub-parts:

• XSL Transformations (XSLT) - specifies how to transform an XML document into another
representation

• XSL Formatting Objects(XSL-FO) - specifies how to format an XML document for display

• XML Path Language (XPath) - a language for addressing the parts of an XML document.

MONK uses XSLT style sheets in a package named Abbot to convert source texts in XML into
compatible TEI Analytics format before they can be ingested into the datastore.

XSLT is used by running a processor program that takes an input XML document and an input
XSLT style sheet (which is also in XML format) and outputs a resultant XML file. The XSLT
style sheet contains a list of transformation rules that dictate what the output should be for
various elements that may be encountered in the input document.

Web Application Frameworks
MONK applications are built on several different web application frameworks including Spring
and Apache Struts. Spring (http://springsource.org) is an open source application framework for
the Java platform. Like most application frameworks, Spring consists of many different elements

14 “A Gentle Introduction to XML,” 10 March 2009 <http://www.tei-c.org/release/doc/tei-p5-doc/en/html/SG.html>.
15 “TEI-Analytics and the MONK Project,” 10 March 2009
<http://www.cch.kcl.ac.uk/cocoon/tei2008/programme/abstracts/abstract-169.html>

MONK Project Research Report page 7 of 15

bundled together. These elements (or modules) provide different services that a complex data-
driven program may need. By using a framework such as Spring an application can integrate
diverse functionality and perform complex tasks using proven methods without having to code
such functionality from scratch. Many features of Spring can be used in any typical Java program
but there are extensions that enable it to be used when developing web applications on the Java
Enterprise platform.

MONK incorporates various middleware programs built on the Spring framework that provide
communication interfaces to the back-end datastore and analytics functionality that can be used
by client applications.

Struts (http://struts.apache.org/) is an open source framework for developing web applications on
the Java Enterprise platform sponsored by the Apache Foundation. Struts uses and extends the
Java Servlet API to provide the framework to develop applications using the Model View
Controller (MVC) paradigm.

MVC is a way of segmenting the application into three domains -- Model (the database and logic
needed to interact with the database), View (the presentation layer that the user interacts with)
and Controller (the logic that transfers information between the Model and the View). The goal
with MVC is to make an application easier to write and maintain. Segmenting the application
into three separate domains encourages security by discouraging data access code from
accidentally being intermingled with public interface code.

Java Servlets are Java Objects based on a web server that receive data requests from a client and
construct dynamic responses that are sent back to the user. Servlets are the Java counterpart to
other server-side platforms used to dynamically generate web content such as PHP and
ASP.NET. MONK uses Struts as the underlying framework of the TeksTale classification system
application.

OpenLaszlo (http://www.openlaszlo.org/) is an open source application development and
delivery platform used for rich Internet applications. Applications made using OpenLaszlo can
be deployed as traditional Java servlets which are compiled and returned to the browser
dynamically or as Adobe Flash applications. OpenLaszlo is cross-platform since it uses Java and
Flash and is delivered via a standard web browser. OpenLaszlo applications are typically
intended to provide an experience similar to traditional desktop applications with the benefit of
"ubiquitous" access afforded by web-based delivery mechanism.

OpenLaszlo is sponsored by Laszlo Systems (http://www.laszlosystems.com/), a private for-
profit company which originally developed the platform and continues to market their own
Laszlo applications. MONK uses OpenLaszlo as the delivery platform for the FeatureLens
Frequent Pattern Analysis tool.

Data Exploration Frameworks
The Software Environment for the Advancement of Scholarly Research (SEASR) is a
programming environment designed to enable digital humanities research. The goal is for a
platform that enables researchers to create powerful applications that can use a variety of source

MONK Project Research Report page 8 of 15

data formats as well as enable interoperability with other research projects developed on the
platform.

According to the SEASR website (http://seasr.org/), SEASR addresses four key needs:

• the ready transformation of (semi-)unstructured data (including natural language texts) to the
structured data world through building extensible software bridges

• improved basic knowledge discovery through supporting enhanced analytics

• time- and distance-independent scholarly and technology exchange through constructing
virtual research environments

• fully open-sourced development for maximizing community involvement, such as by sharing
user applications through community repositories

MONK uses SEASR-based applications for performing statistical analysis on natural language
texts.

Data2Knowledge (D2K) is “a generalized visual-programming framework for data-mining
developed and still being improved at the National Center for Supercomputing Applications, in
the Automated Learning Group.”16 The goal with D2K is to enable researchers to rapidly create
applications to perform typical data-mining tasks that are useful for “prediction, discovery, and
deviation detection, with data and information visualization tools.” 17 D2K components are
written in Java which enables cross-platform compatibility.

The Nora project, a predecessor to MONK, uses D2K applications for "Data Exploration" but the
developers say they are looking to wrap "Data Preparation" into D2K as well. MONK has
adapted many of these applications for its own analytics use.

Datastore
MySQL is a relational database system that uses Structured Query Language to retrieve and store
information. It is mostly open-source but is maintained by a private for-profit company named
MySQL AB. The system provides a database server that hosts multiple separate databases and
can be accessed by many users simultaneously. In addition to an optimized Enterprise edition
there is a free Community version.

MySQL has been shown to scale well for applications storing a very large amount of data as well
as hosting a large amount of concurrent connections (clients). For this reason the database
system is popular for web applications and is available for many different operating systems.
MONK uses MySQL to store all the text in the system after it has been tagged and ingested.
Middleware software accesses the datastore and provides connectivity to client applications.

16 “Project Description,” Metadata Offer New Knowledge (MONK), 10 Mar. 2009
<http://monkproject.org/?page_id=13>.
17 “Project Description,” Metadata Offer New Knowledge (MONK), 10 Mar. 2009
<http://monkproject.org/?page_id=13>.

MONK Project Research Report page 9 of 15

MONK Subsystems
MONK consists of many subsystems that interact with each other and operate in many different
domains. Some are command line applications that run on a server or other high-powered
machine that processes data one time when it is being analyzed for inclusion in the system. Other
systems operate as client-side web applications that are used by researches to access the
knowledge contained within MONK. Between these two domains there are many subsystems
that act as bridges between different platforms.

It is important to note that unlike a more homogenous application, each subsystem has differing
target user demographics and most end users will not directly use many of the subsystems but
will instead interact with the data produced by them. Most of the information for this section was
provided in personal communication with Amit Kumar, a programmer working on MONK at the
University of Illinois at Urbana-Champaign.

Abbot
Abbot encompasses the software needed to convert source texts into a standardized
representation. Natural language text for the MONK project comes from many different digital
collections that use a variety of storage formats and often have slight differences in how certain
textual elements were encoded in the initial digitization stage. Abbot takes these texts and
converts them as best it can into TEI-Analytics format, a subset of the Text Encoding Initiative's
P5 specification.

Data loss is an issue when converting between different formats as other text formats may track
elements that are unsupported in the final TEI-A format. The MONK project Wiki describes
these issues in detail (https://apps.lis.uiuc.edu/wiki/display/MONK/Abbot+and+TEI-
Analytics+texts).

The specific steps involved in the Abbot process are described on the project Wiki
(https://apps.lis.uiuc.edu/wiki/display/MONK/Abbott+process). After converting the files to
TEI-A format they are passed to MorphAdorner for further processing. According to the MONK
project Wiki they have converted over 1,200 works into TEI-A format using Abbot as of April
12, 2008.

MorphAdorner
MorphAdorner is a Java command-line program which performs "morphological adornment of
words in a text.”18 Morphology concerns the identification, analysis and description of structure
of words. Text adornment is the process of annotating source text in order to record metadata
that can be used by other applications to explore the data.

Natural language source text in TEI format provides the input to the program and TEI-encoded
text is returned as output. The adornment is done by adding additional XML tags to the output
while also copying any input tags.19 This XML-based approach has the benefit of maintaining
format compatibility with TEI rather than other adornment methods that typically include
adornment tags inline with the source text.

18 “MorphAdorner,” 10 March 2009 <http://morphadorner.northwestern.edu/morphadorner/>.
19 “MorphAdorner XML Output,” 10 March 2009
<https://apps.lis.uiuc.edu/wiki/display/MONK/MorphAdorner+XML+Output>.

MONK Project Research Report page 10 of 15

MorphAdorner provides “methods for adorning text with standard spellings, parts of speech and
lemmata”20 as well as including tools for tokenizing text, recognizing sentence boundaries, and
extracting names and places. Many of these tools are separately testable through demonstrations
on the MorphAdorner website (http://morphadorner.northwestern.edu/morphadorner/).

The overall dataflow consists of:

• Input

• Sentence Splitting

• Tokenization

• Spelling Standardization

• Part of Speech Tagging

• Lemmatization

• Output 21

MorphAdorner was developed at Northwestern University by Philip R. Burns and Martin
Mueller and exists as a separate project from MONK.

One of the most important functions of MorphAdorner is Part of Speech (POS) tagging which is
the process of adorning words in a text with each word's corresponding part of speech. This
information is critically important to enable higher-level analysis of the relationships between
natural language texts. POS tagging uses a tagset that defines which tags are valid and in what
conditions to apply each tag. By default MorphAdorner uses a part of speech tag set designed by
Martin Mueller named NUPOS. See the Algorithms section for more information on POS
tagging.

Acolyte
Acolyte is a process for specifying additional metadata to be included with a text when it is
ingested into the system. This metadata is often provided by collection curators to supplement
what is available from the text. This stage is important because text comes to MONK in various
formats and may not have all relevant information stored within the source file.

PRIOR
PRIOR encompasses the software routines that ingest text in TEI-A format into the datastore.
This is the process where text that has been annotated is mapped from a TEI-A XML format to a
set of database tables in the MySQL database. This mapping is crucial to ensure that important
metadata has not been lost and that it can be properly queried by MONK applications. PRIOR
combines the annotated text with additional metadata supplied by Acolyte in order to create a
unified datastore representation. John Norstad at Northwestern University is the primary
datastore designer.

20 “MorphAdorner,” 10 March 2009 <http://morphadorner.northwestern.edu/morphadorner/>.
21 “ MorphAdorner: Tech Talk,” 10 March 2009 <http://morphadorner.northwestern.edu/morphadorner/techtalk/>.

MONK Project Research Report page 11 of 15

Statistical Analytic Facilities
Statistical text analytics facilities are built on the SEASR platform and used by end-user clients
for Data Exploration. Access to these analytical facilities is provided by the MONK Middleware.
See the Algorithms Section for more information on the statistical methods used in MONK.

Monk Middleware
Middleware is the “glue” that bridges the back-end MONK infrastructure with client applications
running on many different platforms. MONK middleware is built on the Spring framework and
provides RESTful and XML-RPC interfaces to the underlying datastore (MySQL database) and
SEASR-based analytics procedures.

Through the use of middleware a wide variety of MONK end-user applications can access the
common datastore and analytics facilities of MONK without being constrained to specific
implementation platforms or programming languages. This enables MONK to retain its
usefulness as new and improved application platforms are developed.

MONK Client Applications
Though the project is not finished there are a few client applications already developed that can
be used by researchers to explore the metadata. These client applications are typically web-based
and access MONK services via the middleware. Many of these applications are currently
password protected and not available for public trial while the project is being finished.

Monk Workbench is an EXTJS based framework for developing components that consume the
services. It allows client applications to use a set of modular components that access MONK
services.22 The emphasis on modularity enables components to be used in multiple client
applications to make creating new applications quicker and easier.

TeksTale is a classification application based on the Apache Struts framework. It is partially
developed by the National Center for Supercomputer Applications at UIUC.

MONK Flamenco (http://flamenco.berkeley.edu/) is a port of the Berkeley Flamenco project.
Flamenco is a “search interface framework” that is designed to help users efficiently move
through large information spaces. It focuses on metadata as a means of helping the user figure
out where to go next and how to find the specific subset of information that they need. The
framework is open source so MONK project has ported this library to interface with the MONK
datastore and bring charting capabilities to MONK.

FeatureLens is application for frequent pattern analysis. It consists of a ruby web server that
interacts with the database and an OpenLaszlo client. It is designed to highlight reoccurring
patterns across a wide set of documents. Detailed information on the software architecture has
been posted to the MONK Wiki
(https://apps.lis.uiuc.edu/wiki/display/MONK/Code+Documentation). There is also a live demo
available to the public as of March 2009.

22 “MONK Workbench,” 10 March 2009 <https://apps.lis.uiuc.edu/wiki/display/MONK/Monk+Workbench>.

MONK Project Research Report page 12 of 15

Technical Analysis – Algorithms
This section describes the text-analysis algorithms used in the software developed by the MONK
Project.

Goals
MONK aims to aid humanities scholars in discovering patterns in the texts they study by
compiling metadata from these texts. This metadata ranges from the level of word occurrence to
top-level bibliographic data. Consequently, the algorithms used by MONK attempt to develop
this metadata, either by analyzing the text itself, or by performing analysis on lower-level
metadata.

Although many of the algorithms used in MONK are also used in other text-analysis systems, the
specific objectives within the humanities and, hence, the methods for judging the effectiveness
of these algorithms differ from those in other fields. A report by the Nora Project defines the best
algorithm in the context of literary study as the one that provides, “the most interesting results . .
. the set of results that help you to think more deeply about the ideas your investigating.”23 In
application such as spam filtering, where the goal is to accurately define which texts belong to a
certain category (spam), success can easily be judged by a human reader. In contrast, a
humanities scholar would likely explore classification that cannot be clearly judged by a human
reader in order to develop a further understanding of the features that categorize a set of texts.

Tagging
Described most simply, MONK uses a catalogue of the frequency of words within each text as
the lowest level of metadata. (This is often called the “bag of words” model.) However, for the
purposes of literary analysis, it is not sufficient to classify word tokens simply by searching for
combinations of characters. Firstly, MONK differentiates words based on grammatical
information. For example, use of the word “love” as a noun must be differentiated from its use as
a verb. The association of this information with each word is called part-of-speech (POS)
tagging.24 Additionally, as MONK is developed for use with a large variety of texts, there may
be a great deal of orthographical variance between texts. MONK applies a layer of “virtual
orthographic standardization” (VOS) that standardizes word tokens prior to tagging.25

Collocations and N-grams
This “bag of words” model, which does not consider the ordering of words, is sufficient in many
cases. However, the MONK Project and its predecessors also have methods for analyzing groups
of words occurring in a text. Firstly, a text may be arbitrarily segmented into multi-word tokens
called “N-grams.” Nora allows for analysis of text segmented into bigrams (two word tokens) or
trigrams (three word tokens) in addition to individual words.26 MONK tags each word with its
position within a text so, in practice, MONK can access a word’s immediate neighbors by adding
or subtracting 1 from the position index. MONK and WordHoard also consider collocation,
collections of words that occur together frequently. Phrases (which are called “multiword units”
by WordHoard) a particular type of collocation. Simply, an N-gram that occurs statistically often
in a text is likely a phrase.

23 “NORA Final Report.”
24 MONK Project, “Project Description (Long),” 2007, 23 Oct. 2008 <http://monkproject.org/?page_id=13>.
25 MONK Project, “Project Description (Long),” 2007, 23 Oct. 2008 <http://monkproject.org/?page_id=13>.
26 “NORA Final Report.”

MONK Project Research Report page 13 of 15

The MONK project describes two cases where it would be beneficial to regard sequences of
words as single tokens. The first is short sequences of words that are used together often enough
that they “might as well be words” such as “out of” or “in so far,” and the second is multiword
names such as “William Shakespeare.”27

Statistical Routines
MONK offers a number of statistical routines that make use of the low-level word token
catalogue. Initially, the MONK Project is focusing on developing routines that compare two sets
of texts using Bayes classifiers and Dunning's log likelihood statistic.28

MONK uses Bayes classifiers to classify texts as belonging to one of multiple categories of
texts29. This classification is based on a statistical comparison of the texts being analyzed to a
corpus of texts that have already been analyzed and classified. An article on the use of nora
describes a typical process of using automatic classifiers in the digital humanities context:

1) the system provides the user (in this case, a scholar) with a sample of
documents from the collection

2) the scholar chooses among the sample documents those which are of interest
for a particular study. In the two Nora project examples, a sample of poems from
a collection of Emily Dickinson was rated in terms of erotic content, and a sample
of novel chapters was rated according to their instantiation of the concept
“sentimentalism.”

3) the system performs a set of “feature extraction” actions in order to determine
shared characteristics of the selected documents

4) the scholar examines the shared characteristics and iteratively adjusts the result
as necessary

5) the system applies the resolved characteristics to the larger collection in order
to automatically identify similar documents

6) the scholar studies both the shared characteristics and the result set, often by
using a visualization tool (in Nora, the InfoVis toolkit).30

As described earlier, the goals in this process differ greatly from the use of text-analysis for spam
detection, which also uses Bayes classifiers. In the digital humanities process, the scholar is often
more interested in the features that lead to the automatic classification, rather than the

27 “Notes towards a user manual of Monk,” 2009, 5 Mar. 2009
<https://apps.lis.uiuc.edu/wiki/display/MONK/Notes+towards+a+user+manual+of+Monk>.
28 “Notes towards a user manual of Monk,” 2009, 5 Mar. 2009
<https://apps.lis.uiuc.edu/wiki/display/MONK/Notes+towards+a+user+manual+of+Monk>.
29 “Notes towards a user manual of Monk,” 2009, 5 Mar. 2009
<https://apps.lis.uiuc.edu/wiki/display/MONK/Notes+towards+a+user+manual+of+Monk>.
30 Stan Reucker, Ximera Rossello, Greg Lord, Milena Radizkowska, “The Clear Browser: Visually Positioning an
Interface for Data Mining by Humanities Scholars,” Digital Humanities 2006, Jul. 2006: 258.

MONK Project Research Report page 14 of 15

classification itself. Additionally, this process allows the scholar(s) to iteratively modifying the
classification process which enables open interpretation of the texts.

Ted Dunning’s log likelihood ratio is a statistical routine developed in 1993 specifically for text-
analysis. Dunning’s paper, “Accurate Methods for the Statistics of Surprise and Coincidence”
describes how many statistical methods, such as Pearson's χ2 test and z-score tests, are
insufficient for text-analysis because the corpora are often not large enough and typically contain
a large amount of rarely occurring word tokens, while these tests assume a large sample set with
a near normal distribution.31 The routine using a log likelihood ratio that Dunning suggests is
effective for analyzing text.

As used in MONK, the corpus being analyzed is compared to a reference corpus, producing a list
of words (or other tokens) that are unusually common or rare. The working user manual for
MONK describes an example of the routine’s use:

The list produced by it is often interesting precisely because the words on it are so
ordinary. If you compare Julius Caesar with Shakespeare's other tragedies, ‘she’ is
by far the biggest outlier, and it is underused. Overused words are ‘man’,
‘countryman’, ‘today’, ‘mighty’, ‘do’, ‘countryman’, ‘street’, ‘run’, and
‘honorable’. One can make quite a bit of this list, and generally the list of over-
and under-used words in a given text circumscribes major thematic areas with
considerable precision.32

Evaluation of Opportunities/Limitations for the Transliteracies Topic (and
the Bluesky Group)
[TO BE ADDED]

Resources for Further Study
“ExtJS.” <http://extjs.com/>.

“The Flamenco Search Interface Project.” <http://flamenco.berkeley.edu/>.

“MONK Project.” <http://monkproject.org/>.

“MorphAdorner.” <http://morphadorner.northwestern.edu/morphadorner/>.

“The Nora Project.” <http://www.noraproject.org/>.

“OpenLaszlo.” <http://www.openlaszlo.org/.>

“Roma.” <http://tei.oucs.ox.ac.uk/Roma/.>

“Spring Source.” <http://springsource.org>.

31 Ted Dunning, “Accurate Methods for the Statistics of Surprise and Coincidence,” Computational Linguistics,
Volume 19, number 1, 1993: 61-74.
32 MONK Project, “Project Description (Long),” 2007, 23 Oct. 2008 <http://monkproject.org/?page_id=13>.

MONK Project Research Report page 15 of 15

“Struts.” <http://struts.apache.org/.>

“WordHoard.” <http://wordhoard.northwestern.edu>.

